Clostridium histolyticum as first-line treatment of Dupuytren’s disease

Charlotte Hartig-Andreasen, Lena Schroll & Jeppe Lange

ABSTRACT

INTRODUCTION: The optimal minimal invasive treatment for Dupuytren's contractures (DC) remains debated. The aim of this study was to evaluate the effect of Clostridium histolyticum collagenase after 1-4 years of follow-up. The outcomes of this study were 1) overall improvements in degrees from baseline to follow-up; 2) contraction recurrence defined as an extension deficit above 20°, and 3) Hurst endpoint defined as an extension deficit below 5°.

METHODS: All patients treated with C. histolyticum collagenase at the Regional Hospital Horsens from 2013 to 2016 with a minimum of one year of follow-up due to DC were included. The range of motion of the affected finger joint was measured before and immediately after injection and at follow-up. Specific information regarding known comorbidities to DC was acquired.

RESULTS: A total of 112 metacarpophalangeal (MCP) and 47 proximal interphalangeal joints were included. Total improvement in the range of motion for MCP and proximal interphalangeal joints were 43° and 16°, respectively. The recurrence rate was 9% for MCP joints and 70% proximal interphalangeal joints. 73% of MCP joints and 9% of proximal interphalangeal joints achieved the Hurst endpoint. 92% of the patients were willing to repeat treatment.

CONCLUSIONS: Collagenase is a viable first-line treatment for MCP joint contractures. However, results are inferior in the proximal interphalangeal joint.

FUNDING: This work was supported by the Scientific Foundation of Horsens Regional Hospital (grant number 00.06-G01-1-17).

TRIAL REGISTRATION: ClinicalTrials ID NCT03331926.
the study period, *C. histolyticum* collagenase was performed in two-thirds, whereas one-third of patients either preferred surgery or the DC cord was not suitable for enzymatic treatment according to the manufacturer’s guidelines. Indications for *C. histolyticum* collagenase were a palpable Dupuytren’s cord with an active ED of 20° or above in a finger PIP or MCP joint.

C. histolyticum collagenase was administered according to the manufacturer’s guidelines in MCP and PIP joints, and manipulation was performed the day after injection. All patients were recommended to use a night extension splint for three months. The active ED was measured with a goniometer before injection, after manipulation and at FU. Specific information regarding known comorbidities to DC was acquired (diabetes mellitus, drugs, smoking and type of employment).

Data analysis

Parametric data were presented as means with 95% CIs and non-parametric and categorical data were presented as medians with 25%-75% interquartile range (IQR).

Uni- and multivariate regression analyses were performed to identify potential predictors of outcome among selected baseline variables (sex, age, family history, smoking and diabetes mellitus). Only ring and little fingers were included in the regression analyses. Patients who were excluded or who were not available for FU were not included in analysis.

Trial registration: The study was registered with ClinicalTrials.gov (NCT03331926) and approved by the Danish Data Protection agency (1-16-02-43-17). Under current national legislation, a formal ethics approval was not necessary.

RESULTS

The baseline median ED was 50° (IQR: 40-60°, range: 20-90°) for MCP joints and 55° (IQR: 40-65°, range: 20-90°) for PIP joints. The median ED after manipulation was 0° (IQR: 0-0°, range: 0-10°) for MCP and 0° (IQR: 0-10°, range: 0-50°) for PIP joints. At FU, the median ED was 0° (IQR: 0-10°, range: -10-75°) for MCP joints and 40° (IQR: 20-55°, range: 0-80°) for PIP joints. After manipulation, the overall mean reduction in ED was 50° (95% CI: 47-52°) in MCP joints and 47° (95% CI: 42-52°) in PIP joints. At FU, the overall mean reduction in ED was 43° (95% CI: 39-47°) in MCP joints and 16° (95% CI: 9-22°) in PIP joints. Contraction recurrence was seen in ten (9%) MCP joints and in three (7%) PIP joints. The Hurst endpoint was maintained at FU in 82 (73%) MCP joints and in four (9%) PIP joints. Complete correction of ED (ED = 0°) was maintained in 76 (68%) of the MCP joints and in two (5%) of the PIP joints at FU.

Regression analysis identified no correlations between the selected predictor variables in any of the reported outcomes. One patient described minor cold intolerance to the treated finger; no other major adverse events, such as nerve injuries; complex regional pain syndrome or tendon ruptures were identified at FU. A total of 27 patients (17%) had a skin rupture that healed without infections or problems. At FU, 119 pa-

TABLE 1

Baseline demographic and clinical data for 119 patients treated with a single-shot *Clostridium histolyticum* collagenase. Mean age at treatment was 68 (95% CI: 67-69) years.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (n = 119)</th>
<th>MCP (n = 112)</th>
<th>PIP (n = 47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td>97 (82)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Family disposition</td>
<td>54 (45)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bilateral affection</td>
<td>101 (85)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Currently smoker</td>
<td>29 (24)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alcohol consumption*</td>
<td>95 (80)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>17 (12)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Antiepileptic medicine</td>
<td>4 (3)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Affected finger by joint treated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>–</td>
<td>1 (1)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Middle</td>
<td>–</td>
<td>5 (4)</td>
<td>3 (6)</td>
</tr>
<tr>
<td>Ring</td>
<td>–</td>
<td>48 (44)</td>
<td>13 (28)</td>
</tr>
<tr>
<td>Little</td>
<td>–</td>
<td>57 (51)</td>
<td>28 (60)</td>
</tr>
</tbody>
</table>

CI = confidence interval; MCP = metacarpophalangeal joint; PIP = proximal interphalangeal joint.

a) Defined as > 0 U/wk irrespective of sex.
DISCUSSION

We found that *C. histolyticum* collagenase is effective for DC in MCP joints with a low recurrence rate after 1-4 years of FU; however, with inferior results in PIP joints.

Our findings are comparable to those reported in existing literature evaluating *C. histolyticum* collagenase in large, standardised series. The three-year CORDLESS study [6] identified a maintained low recurrence in 65% of the treated joints, similar to our study, and the highest recurrence rate was recorded for PIP joints (56%) compared with MCP joints (27%). Evaluating the same population, the CORDLESS five-year study identified successful treatment in 53% of the joints, again with a poorer outcome in PIP than MCP joints [9].

The direct cost of *C. histolyticum* collagenase is higher than the cost of PNF. A randomised controlled trial with two-year FU in 50 PIP joints [10] failed to show a superior effect of *C. histolyticum* collagenase compared with PNF with a contracture recurrence of 83% in the *C. histolyticum* collagenase group, similar to the 70% found in our study.

In a single-blinded, prospective study, 69 MCP joints treated with *C. histolyticum* collagenase were compared with 71 MCP joints treated with PNF. At the one-year FU, 90% of the joints in both groups maintained full extension [11]. A randomised, controlled trial with one-year FU of 86 rays (81 MCP joints and 38 PIP joints) found no significant difference in outcomes [12]. Further long-term randomised studies with con-joint cost-effectiveness analysis of minimal invasive treatments of DC are needed before an in-depth differentiation between *C. histolyticum* collagenase and PNF is possible. As such, which treatment to apply in DC is optimally made by the surgeon and patient in a shared decision after discussing the advantages and drawbacks? In general, patients are satisfied with *C. histolyticum* collagenase; and if recurrence occurs, 92% of the patients in our sample were willing to repeat their *C. histolyticum* collagenase procedure, which has also been reported previously [13].

Adverse events to *C. histolyticum* collagenase are progressively described in the literature. We observed no major adverse events (infections, tendon ruptures, or complex regional pain syndrome) in our study. Tears of the skin are common after manipulation. In our study, skin tears were seen in 17% of the cases, which is comparable to reports from other studies [10, 14].

The cause of DC is multifactorial. Gender [15], age [16], inheritance [17], smoking [18], diabetes [19] and manual labour [20] have all been associated with DC. We evaluated known risk factors, trying to identify possible predictors for recurrence in general and per joint, but none were found to be significantly associated with outcome in our sample.

We recognise that our study has limitations. A total of 43 patients were excluded or not available for FU, and 27 patients had received previous treatment before referral to our institution. Our cohort thus consists of a sample of DC patients undergoing *C. histolyticum* collagenase treatment for the first time. Eleven patients were excluded and thus not evaluated in our study as they had already received further treatment for DC between the baseline treatment and the planned FU. Theoretically, this could decrease the rate of success for a single-shot *C. histolyticum* collagenase to 16% ((10 + 11)/(119 + 11)) contracture recurrence in MCP joints and to 83% ((33 + 11)/(42 + 11)) contracture recurrence in PIP joints.

Unquestionably, recurrence of DC remains a challenge. Yet, the definition of recurrence after treatment of DC is unclear in the literature. There is no apparent consensus as to whether ED should be evaluated by passive or active finger motion, and whether to use a dichotomous limit of 0°, 5° or 20° of ED as failure, or a continual degree of reduction. We measured an active ED, and hence we expect that our results are more conservative than those of studies evaluating passive ED.

The FU period varies from one to four years. As DC is a progressive disease, the rate of contracture recurrence could increase with an increase in the minimum FU period. Only one surgeon performed the treatments. The surgeon had no previous experience in the use of *C. histolyticum* collagenase besides the standardised introduction programme provided by the manufacturer. However, we see this as strength to the study, and as a true description of the effectiveness of *C. histolyticum* collagenase in a non-selected everyday series of patients.

This study confirms that *C. histolyticum* collagenase is an effective and safe treatment for DC and shows that *C. histolyticum* collagenase is valuable as a first-line procedure in MCP joints, but with inferior results in PIP joints, at 1-4 years of FU.
CORRESPONDENCE: Charlotte Hartig-Andreasen.
E-mail: hartig@dadlnet.dk

ACCEPTED: 28 November 2018

CONFLICTS OF INTEREST: Disclosure forms provided by the authors are available with the full text of this article at Ugeskriftet.dk/dmj

LITERATURE