Implementation of pulse oximetry screening in a Danish maternity ward

Kathrine Work Havelund1, Martin Hulgaard1, Diane Malberg2 & Jesper Fenger-Gron1

Until recently, maternity wards in Danish hospitals refrained from pulse oximetry screening (POS) of newborns as a method for detection of critical congenital heart disease (CCHD). One argument in support hereof was a high prenatal detection rate using ultrasound in the second trimester. However, no Danish studies of POS have been published. This study evaluates the first year with POS at Kolding Hospital, the Southern Region of Denmark.

METHODS: All apparently healthy newborns were offered POS few hours postpartum. Both pre- and post-ductal POS were carried out using a well-known protocol and registered as POS approved; POS repeated and approved; or POS not approved, paediatrician called. Paediatricians registered clinical data, and general experiences regarding POS were collected.

RESULTS: POS was performed in 2,855 newborns; 2,715 were approved immediately, 81 were repeated. Paediatric assistance was required for 59 newborns; 16 could stay in the maternity ward following assessment, while 18 were admitted for observation until their saturation normalised. One newborn had CCHD, while ten had other conditions needing treatment and 14 had more benign respiratory disorders. One sick newborn would not have been picked up by post-ductal screening only. No midwives performing the screening and no parents reframed from POS.

CONCLUSIONS: Early POS as part of the routine examination few hours postpartum seemed natural to midwives and parents but induced an increased false-positive rate. Early POS may discover other serious conditions in time for intervention.

FUNDING: none.

TRIAL REGISTRATION: none.

ABSTRACT

INTRODUCTION: Detecting critical congenital heart disease (CCHD) by prenatal ultrasound and routine examination of newborns is insufficient, and pulse oximetry screening (POS) has been recommended. POS has been implemented by some Danish maternity wards, but not by all. However no Danish studies of POS have been published. This study evaluates the first year with POS at Kolding Hospital, the Southern Region of Denmark.

METHODS: All apparently healthy newborns were offered POS few hours postpartum. Both pre- and post-ductal POS were carried out using a well-known protocol and registered as POS approved; POS repeated and approved; or POS not approved, paediatrician called. Paediatricians registered clinical data, and general experiences regarding POS were collected.

RESULTS: POS was performed in 2,855 newborns; 2,715 were approved immediately, 81 were repeated. Paediatric assistance was required for 59 newborns; 16 could stay in the maternity ward following assessment, while 18 were admitted for observation until their saturation normalised. One newborn had CCHD, while ten had other conditions needing treatment and 14 had more benign respiratory disorders. One sick newborn would not have been picked up by post-ductal screening only. No midwives performing the screening and no parents refrained from POS.

CONCLUSIONS: Early POS as part of the routine examination few hours postpartum seemed natural to midwives and parents but induced an increased false-positive rate. Early POS may discover other serious conditions in time for intervention.

FUNDING: none.

TRIAL REGISTRATION: none.
false-positive rate, but taking into account that a non-approved POS often reveals other severe conditions requiring medical intervention [4, 14].

The Danish Health Authority has no official recommendation regarding POS, but screening has started at several Danish maternity wards. At the maternity ward in Kolding Hospital, a Danish hospital with approximately 3,400 annual births, POS was implemented in 2017 and the purpose of the present study was to evaluate the first year with screening.

METHODS
Screening procedure
Obviously, sick newborns were rapidly transferred to the neonatal intensive care unit (NICU), while all apparently healthy newborns were screened with POS before discharge from the maternity ward. Screening was implemented as part of the routine examination of the newborn performed by one of 75 midwives in the maternity ward. Both a pre-ductal (right hand) and post-ductal (either foot) measurement were performed, using handheld Nellcor pulse oximeters from Covidien (Nellcor portable SpO2 Patient Monitoring System, PM10N). Neonate wrap-sensors and paediatric clips gave reliable and stable measurements, and both were used for screening. Oximeters were set up for neonatal use, and settings were locked. Oximeters were checked regularly by the medicotechnical ward.

Screening was performed in accordance with a well-known protocol [4]. Results were coded electronically in the neonate’s record as either POS approved (peripheral capillary oxygen saturation (SpO2) ≥ 95%; ZZ4137B); POS repeated and approved (SpO2 91-94%, followed by SpO2 ≥ 95%; ZZ4137B + ZZ4137); or POS not approved, paediatrician called (SpO2 < 90%, on either measurement site; ZZ4137A + ZNAA80). A difference between the hand and foot measurement of > 3% triggered re-screening.

Data collection and storage
The project was designed as a quality project and approved by the local hospital authority. Newborns involving paediatricians on the basis of a non-approved test were identified consecutively. Screening results as well as subsequent clinical outcomes were recorded on a data sheet. Regularly, a search on the procedure codes ZZ4137A + ZNAA80 was carried out and the sheets were completed by adding anonymising data. Data were fully anonymised and not patient identifiable. Other searches on approved tests (ZZ4137B) and repeated and approved tests (ZZ4137B + ZZ4137) established the number of newborns in these groups. The local data storage authority approved data storage.

Statistical analysis
Descriptive statistics are presented as means and standard deviations for variables showing normal distribution, and as medians and interquartile range (IQR) for non-normally distributed data.

All descriptive statistics were performed in Excel 2016, Microsoft Office.

Trial registration: none.

RESULTS
Figure 1 shows core data after the implementation of POS at Kolding Hospital, including 3,331 deliveries. Table 1 presents more details regarding the 59 newborns requiring paediatric assessment.

Among the screening-positive newborns, 27% could stay with their mother in the maternity ward following paediatric assessment, whereas 31% were admitted for relatively short observation at the NICU while saturation normalised without treatment. One newborn diagnosed with polycythaemia, and treated with oxygen and intravenous glucose, only displayed a difference between pre- and post-ductal saturation and would not have been picked up by post-ductal screening only.

The median screening time after birth for the first POS was 2.5 (IQR ± 1) hours. The shortest screening time after birth was 0.5 hours; the longest 7.5 hours. If necessary, repeated screenings were conducted 0.5-1 hour later.

To midwives and parents alike, the routine examination of the newborn seemed to be a natural time to
DISCUSSION
Screening of apparently healthy newborns by pulse oximetry was implemented at the regional hospital in Kolding and, during the first year, screenings were carried out of 2,855 newborns. Prior to implementation of POS, concerns were raised by midwives about the amount of time required for the procedure. Further concerns, shared by other professions, referred to unnecessary worries among newborns’ parents. In Kolding, POS was initiated and fully implemented surprisingly fast and smoothly. One major explanation was the training given to the key midwives who hold the initial responsibility for POS in everyday practice, until all 75 midwives of the maternity ward were confident in performing the screening. Implementation of POS in the routine examination of the newborn minimised the time spent and seemed to make the extra assessment a natural part of every delivery. Previously, other studies have reported that parents seem to perceive POS as a natural procedure, ensuring the health of their baby [2, 14]. Our study endorses this conclusion.

One newborn (0.03%) presented with low saturation on the basis of pulmonary stenosis. The routine ultrasound performed at gestational age 20 weeks was reviewed, but the stenosis could not be recognised at this time. To our knowledge, no other newborns delivered at the maternity ward during the one-year period were diagnosed with CCHD after delivery. Previous studies have found that for every 10,000 apparently healthy newborns screened, six (0.06%) will have CCHD, and POS will detect five of these [6]. The false-positive rate was a problem associated with early screening. POS triggered paediatric assistance in 59 cases, and the false-positive rate for CCHD was 2.0%. This is substantially higher than the false-positive rate of 0.04-0.05% reported in a large American study and by the American Heart Association, respectively [7, 13], when screening was performed more than 24 hours after birth. Likewise, the rate was remarkably higher than reported in the Cochrane Review from 2018, when screening was performed within 24 hours (0.42%), probably because screening 2.5 hours post-natally is in the very low range of the 24 hour span.

A positive consequence of early screening is that it allows us to detect other important conditions in time for sufficient treatment [5]. In obvious cases, newborns were referred to the NICU immediately, while apparently healthy newborns often had another measurement of saturation carried out using paediatric equipment. This sensor is disposable, making each measurement much more expensive and unsuitable for screening procedures, but the saturation curve seemed more stable. Remarkably, thorough paediatric assessment could rule out the need for further treatment in 16 out of 59 cases, allowing these false positives to stay in the maternity ward by their mother.

Fourteen newborns (23.7%) had low saturation caused by transitory tachypnoea, and ten newborns (16.9%) presented with other conditions, all requiring treatment at the NICU. This positive effect of screening is in line with results reported in previous studies [15] in which other severe illnesses were found among 37-70% of the newborns with false-positive results. All in all, 73% ended up being transferred to the NICU, 31% displaying no symptoms during observation while the remaining 42% did require treatment. The term false-positive rate therefore seems questionable, as about half the group requires treatment at the NICU.

To obtain an approved test, 2.8% (81 newborns) were exposed to more than one screening by the midwife. To our knowledge, this result has not been reported in other studies, but the rate of re-screening is an important observation as it extends the stay in the maternity ward for healthy newborns and may cause increased anxiety among parents of the newborns.

International and national recommendations
A European consensus report recommends that POS be implemented in all EU member countries, performing the screening after six hours of life, and preferably before 24 hours of life. The higher false-positive rate when screening < 24 hours of life is considered acceptable, recognizing the significant number with serious non-cardiac illness. In contrast to the recommendations of the Danish National Society of Paediatrics, the report concludes that screening should be performed in two extremities (right arm and one leg), although the level of evidence for this recommendation is low [15]. The Danish National Society of Paediatrics has made a com-

<table>
<thead>
<tr>
<th>Outcome of abnormal screening result, requiring paediatric assistance (N = 59).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy newborns examined at the birth ward</td>
</tr>
<tr>
<td>Newborns admitted for observation</td>
</tr>
<tr>
<td>Newborns who required treatment</td>
</tr>
<tr>
<td>Polythaemia</td>
</tr>
<tr>
<td>Hypoglycaemia</td>
</tr>
<tr>
<td>Infection</td>
</tr>
<tr>
<td>Transitory tachypnoea</td>
</tr>
<tr>
<td>Subtotal</td>
</tr>
</tbody>
</table>
mon paediatric guideline recommending only post-du
tal screening at 4–6 hours after birth [12]. This
recommendation is mainly based on the recently pub-
lished Cochrane review [6]. At present, The Danish
Health Authority has no official recommendation in
this respect.

After the screening period of this study, the mater-
nity ward of Kolding Hospital decided to change the
screening procedure to post-ductal screening following
the Danish recommendation mentioned above. Post-
ductal screening would minimize the problems of get-
ting stable signals. However, this did not seem to be a
major challenge during the one-year study period dur-
ing which we performed both pre- and post-ductal
screening. One sick newborn suffering from polycy-
thaemia would not have been picked up by post-ductal
screening. Currently, in the Southern Region of Den-
mark, two hospitals have decided to perform post-
ductal screening while the other two hospitals, includ-
ing the University Hospital of the region, adhere to
pre- and post-ductal POS. Thus, within the region,
there is a lack of consensus on the screening protocol.

Strengths and weaknesses of the study
The study was too small for calculation of an exact
CCHD detection rate, and other rates should be con-
sidered with care. Still, experiences from the first year
of screening at a typical Danish maternity ward may be
of relevance and importance at a time when some Dan-
ish regions have chosen to follow Danish and interna-
tional POS recommendation, and other regions than
ours have, for different reasons, refrained from imple-
mentation of POS.

The formalised screening protocol made the screen-
ing procedure quite standardized even though it was
carried out by a total of 75 midwives. The number of
cases of POS approved; POS repeated and approved;
and POS not approved, involving a paediatrician had to
be stated through data extraction, and even though the
quality manager has continuously monitored coding,
some minor miscoding cannot be ruled out.

CONCLUSIONS
POS of all apparently healthy newborns was imple-
mented at a Danish maternity ward without major
practical problems. Performing POS while making the
routine examination of the newborn 2.5 hours post-
natally clearly resulted in more false-positive results.
This disadvantage should be balanced against the ad-
vantage of POS as a natural step from the perspective
of both the midwives and the parents and, importantly,
the timely finding of newborns who required treat-
ment. More than a quarter of the false positives could
stay by their mother at the maternity ward following
thorough paediatric assessment. We confirmed that se-
vere CCHD may also in a Danish setting, be overlooked
prenatally and picked up by POS.

CORRESPONDENCE: Kathrine Work Havelund.
E-mail: kathrine@work-havelund.dk
ACCEPTED: 26 September 2019
CONFLICTS OF INTEREST: none. Disclosure forms provided by the authors
are available with the full text of this article at Ugeskriftet.dk/dmj

LITERATURE
disease in Denmark incidence, detection rate, and termination of
congenital heart defects in newborn infants: An evaluation of accept-
metode til detektion af kritisk medfødt hjertesygdom hos nyfødte.
Ugeskr Læger 2014;176:V682-5.
- implementation status and proposal for uniform guidelines. Acta
5. Ewer AK, Martin GR. Newborn pulse oximetry screening: which algo-
6. Plana MN, Zamora J, Suresh G et al. Pulse oximetry screening for crit-
ical congenital heart defects. Cochrane Database Syst Rev
2016;3:CD001912.
7. Mahle WT, Newburger JW, Mathirer GP et al. Role of pulse oximetry in
examining newborns for congenital heart disease: a scientific state-
ment from the American Heart Association and American Academy of
8. Granelli ADW, Wennergren M, Sandberg K et al. Impact of pulse oxim-
etry screening on the detection of duct dependent congenital heart
disease: a Swedish prospective screening study in 39 821 newborns.
tation of Newborn Screening Policies for Critical Congenital Heart
Disease With Early Infant Cardiac Deaths. JAMA 2017;318:2111.
for critical congenital heart defects in asymptomatic newborn babies:
a systematic review and meta-analysis. Lancet 2012;379:2459-64.
11. Ewer AK. Pulse oximetry screening: Do we have enough evidence
12. Stanchev H, Steensberg J, Kruse C et al. Saturation (SatO2) screening
Jersey Statewide Critical Congenital Heart Defects Screening Program.
14. Ewer AK, Furnston AT, Middleton L et al. Pulse oximetry as a screen-
ing test for congenital heart defects in newborn infants: a test accu-
Racy study with evaluation of acceptability and cost-effectiveness.
15. Manzoni P, Martin GR, Sanchez Luna M et al. Pulse oximetry screening
for critical congenital heart defects: a European consensus state-